Formulas of power engineering

Cross section

- for direct current and single phase alternative current of known **current** for three-phase current
- $q = \frac{1,732 \cdot I \cdot \cos\phi \cdot l}{\kappa \cdot u} \text{ (mm}^2\text{)}$
- for direct current and single phase alternative current of known **power** for three-phase current

Voltage drop

For low voltage cable network of normal operation, it is advisable of a voltage drop of 3-5%.

On exceptional case, higher values (up to 7%) can be permitted in case of network-extension or in short-circuit.

for direct current	0 7 1
of known current	$u = \frac{2 \cdot I \cdot l}{\kappa \cdot q} (V)$
for single phase alternative current	$u = \frac{2 \cdot I \cdot \cos \phi \cdot 1}{\kappa \cdot \alpha} $ (V)
	$1,732 \cdot I \cdot \cos \varphi \cdot 1$
for three-phase current	$u = \frac{\kappa \cdot q}{\kappa \cdot q}$

for direct current

ior direct current		0 + D	
of known power	u =	2 · I · P	 (\/)
•		$\kappa \cdot q \cdot U$	
for single phase	11 =	2 · I · P	^^
alternative current	u –	$\kappa \cdot q \cdot U$	()
for three-phase current		$I \cdot P$	^^
TOT LITTEE-DITASE CUITEIIL	u – –	- II	- (V)

- tor three-phase current $u \frac{\kappa \cdot q \cdot U}{\kappa \cdot q \cdot U}$ u = voltage drop (V) $q = \text{cross-section (mm}^2)$ $U = operating \ voltage \ (V) \qquad I = working \ current \ (A)$ 1 = length of the line (m)
- P = power (W) R_w = effective resistance (Ω /km)
- L = Inductance (mH/km) κ (Kappa) = electrical conductivity of conductors
- ωL = inductive resistance $(\Omega)/\text{km}$) $(\omega = 2 \cdot \pi \cdot f)$
 - at 50 Hz = 314) κ-copper : 58 ◀ κ -Alu : 33

Nominal voltage

The nominal voltage is to be expressed with two values of alternative current U₀/U in V (Volt).

- U_0/U = phase-to-earth voltage
- : Voltage between conductor and earth or metallic covering (shields, armouring, concentric conductor)
- : Voltage between two outer conductors
- : $U/\sqrt{3}$ for three-phase current systems : U/2 for single-phase and direct current systems
- U_0/U_0 : an outer conductor is earth-connected for A.C.- and D. C.-systems

Nominal current

I in (A)

Active current

 $I_w = I \cdot \cos \phi$

Reactive current

 $I_0 = I \cdot \sin \varphi$

Apparent power (VA)

 $S = U \cdot I$ for single phase current (A.C.) $S = 1,732 \cdot U \cdot I$ for three-phase current

Active power (W)

for single phase current (A.C.) $P = U \cdot I \cdot \cos \varphi$ $P = 1,732 \cdot U \cdot \dot{I} \cdot \cos \phi$ for three-phase current $P = U \cdot I$ for direct current

Reactive power (var)

 $Q = U \cdot I \cdot \sin \phi$ for single phase current (A.C.) $Q = 1,732 \cdot U \cdot I \cdot \sin \varphi$ for three-phase current (Voltampere reactiv) $Q = P \cdot \tan \varphi$

φ is a phase angle between voltage and current

Insulation resistance

$$R_{iso} \ = \ \frac{S_{iso}}{l} \ \cdot \ ln \ \frac{Da}{d} \ \cdot 10_{-8} \ (M\Omega \ \cdot \ km)$$

Specific Insulation resistance

$$R_{s} = \frac{R \cdot 2\pi \cdot 1 \cdot 10^{8}}{\ln \frac{Da}{di}}$$

- = outer diameter over insulation (mm)
- = conductor diameter (mm)
- di = inner diameter of insulation (mm)
- 1 = length of the line (m)
- S_{iso} = Spec. resistance of insulation materials ($\Omega \cdot cm$)

Mutual capacity (C_B) for single-core, three-core and H-cable) $C_B = \frac{\xi r \cdot 10^3}{18 \ln \frac{Da}{d}}$ (nF/km)

$$C_{B} = \frac{\xi r \cdot 10^{\circ}}{18 \ln \frac{Da}{d}} (nF/km)$$

Inductance

Single-phase
$$0.4 \cdot (\ln \frac{Da}{r} + 0.25) \text{ mH/km}$$

three-phase $0.2 \cdot (\ln \frac{Da}{r} + 0.25) \text{ mH/km}$

- D_a = distance mid to mid of both conductors
- r = radius of conductor (mm) $\xi r = dielectric constant$
- 0,25 = factor for low frequency

Earth capacitance

$$E_C = 0.6 \cdot C_B$$

Charging current (only for three-phase current)

$$I_{Lad}$$
 = U · 2 π f · C_B · 10-6 A/km per core at 50 Hz

Charging power

$$P_{Lad} = I_{Lad} \cdot U$$

Leakage and loss factor

Dielectric loss

It should be noted that for the current load of the insulated cables and wires of selected cross-section, the power ratings table is also be considered.

To estimate the voltage drop of insulated wires and cables for heavy (big) cross-sections of single- and three-phase-overhead line, the active resistance as well as the inductive resistance must be considered.

The formula for single-phase (A.C.):

 $U = 2 \cdot 1 \cdot I \cdot (R_w \cdot \cos \varphi + \omega L \cdot \sin \varphi) \cdot 10^{-3} (V)$ $U = 1,732 \cdot 1 \cdot I \cdot (R_{W} \cdot \cos \varphi + \omega L \cdot \sin \varphi) \cdot 10^{-3} (V)$